Le progrès de la fabrication additive métallique a considérablement augmenté les possibilités d'optimisation et de conception des systèmes d'échangeurs de chaleur. Dans ce travail, nous présentons des améliorations de conception possibles et une optimisation avancée des surfaces étendues pour les échangeurs de chaleur à plaques et ailettes. Tout d'abord, les propriétés, limites et contraintes de la fabrication additive sont évaluées pour en tirer pleinement les avantages dans le domaine des échangeurs de chaleur. Puis une évaluation expérimentale a été réalisée sur des mini-canaux imprimées en 3D pour estimer leurs propriétés thermo-hydrauliques par rapport à celles obtenues pour une fabrication conventionnelle. Les canaux imprimés en 3D montrent de bons accords avec les corrélations disponibles dans la littérature en particulier dans le cas du régime laminaire. Les corrélations validées sont utilisées pour la conception et l'optimisation paramétrique d'un échangeur de chaleur à ailettes ondulées. La conception optimisée pour le processus d'impression 3D a conduit à un échangeur de chaleur 50% plus léger pour le même rendement thermique et la même perte de charge. Une optimisation paramétrique avancée a alors été appliquée en modifiant l'amplitude locale de chaque onde de l'ailette le long de l'écoulement. Cela a permis de réduire le coût de fonctionnement de 15% pour la même performance thermique. Enfin pour tirer profit davantage du processus de fabrication additive, une amélioration locale par enlèvement de matière a été réalisée sur un échangeur de chaleur à ailettes décalées en utilisant FLUENT. En supprimant 12% des cellules thermiquement inefficaces, la perte de charge a été réduite de 20% pour le même service thermique.
The advancement in metal additive manufacturing has tremendously increased the optimization and design possibilities of heat exchangers systems. In this work, we present possible design improvements and an advanced extended surfaces optimization for plate and fins heat exchangers. First, additive manufacturing properties, limitations and constraints are evaluated for a better heat exchangers design. Then an experimental assessment was conducted on 3D printed mini channels to evaluate their thermal hydraulic properties with respect to the one manufactured conventionally. The 3D printed channels shows good agreements with the correlations already found in the literature in the laminar flow regime. As Reynolds number increases, the measured heat transfer coefficient and pressure drop are higher than the theoretical values. The validated correlations were used to conduct the design and parametrical optimization of a wavy fin heat exchanger. The heat exchanger obtained from the design process optimized for the 3D printing was 50% lighter than the one usually used by conventional manufacturing for the same heat duty and pressure drop. Furthermore, an advanced parametrical optimization was applied by changing the local amplitude of each fin wave along the flow. This permitted to reduce the operating cost by 15% for the same heat exchange rate. To take more advantage of the additive manufacturing process, local enhancement by material removal was conducted on an offset fin heat exchanger using the commercial computational fluid dynamics FLUENT. By removing 12% of thermally ineffective cells, the pressure drop was reduced by 20% for the same heat duty.
Titre anglais : Parametrical optimization of heat exchangers, validation using 3D printing.
Date de soutenance : lundi 15 mars 2021 à 14h00
Adresse de soutenance : MINES ParisTech 60, Bd Saint-Michel 75006 PARIS - L108
Directeur de thèse : Chakib BOUALLOU
Codirecteur : Barbar ZEGHONDY
Co-encadrant : Maroun NEMER
Ecole
240 ans de recherche et de formation
Vidéo : 240ans de recherche
> En savoir +
Formation
Mines Paris plébiscitée par ses étudiantes
Mines Paris - PSL, une école qui répond
> En savoir +
Formation
Femmes de science
Chercheuses confirmées, doctorantes, élèves ou alumni,
> En savoir +
Formation
Quelle école d’ingénieurs a le
Mines Paris - PSL au Top 5 du classement LinkedIn 2023
> En savoir +
Formation
Virginie Ren remporte un Trophée Veolia de la
Virginie Ren, ingénieure Mines Paris - PSL, en
> En savoir +
Formation
Agathe Gilain, Prix de droit, économie et
L’Académie de l’Air et de l’Espace
> En savoir +